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broken"

e "Sorry, | entirely forgot what we're trying to do"

® "Sorry, I'm doing a lot of handwaving"

® "This can be mitigated by another communication round"




Chelsea Komlo and lan
Goldberg. FROST: Flexible

round-optimized Schnorr
threshold signatures.

FROST KeyGen
Round 1

1. Every participant P, samples ¢ random values (a,q, - . ., a(s— 1) y) <— Ly, an
uses these values as coefficients to define a degree r -1 polynomlal

. f—1 ;
filz) = ZJ o g
2. Every P, computes a proof of knowledge to the corresponding secret a;q by
. $ .
calculating o; = (R;, i), such that k & Z,, R; = g*,
c; = H(i, P, g%, R;), p; = k + a;g - ¢;, with ® being a context string to
prevent replay attacks.

3. Every participant P; computes a public commitment Cﬂ ={i0,-- -+ Pigt—1))»
where ¢;; = ¢"9,0< j <t—1

4. Every P, broadcasts C., o, to all other participants.

5. Upon receiving Cy, oy from participants 1 < ¢ < n, £ # i, partlmp’mt P

verifies oy = (Ry, yuy), aborting on failure, by checking Ry = g#* - ¢,
where Cy = H ({ﬁ‘ ‘;D (J,g_(]: Iw)

Upon success, participants delete {o; : 1 < ¢ < n}.

Round 2

1. Each P; securely sends to each other participant P, a secret share (£, f;({)),
deleting f; and each share afterward except for (7, f;(¢)), which they keep
for themselves.

o ray P T ke .
2. Each P, verifies their shares by calculating: ¢/*() = TT\_{ &5, ™% 9, aborting

if the check fails.

3. Each P calculates their long-lived private signing share by computing
$; = Yy, fe(i), stores s; securely, and deletes each fy(i).

4. Each P calculates their public verification share Y; = ¢, and the group’s
public key Y = [[/_, ¢;o. Any participant can compute the public

verification share of any other participant by calculating
n t—1

Jk mod g
=TT e

i=1k=0




What is distributed key
generation in FROST?

e Interactive protocol between n signers that takes ¢
e Outputs for each signer i:

= the threshold public key
= the secret share signer i will use for signing
e Properties:

m ¢ out of n signers can use their share to sign
= At least ¢ signers are required to produce a
signature

o In particular, there's no "trusted dealer" that
generates and distributes the shares



The FROST RFC famously
does not specify a DKG. It
relies on a trusted dealer.



We should write a detailed
specification of the key
generation protocol...



Interactive Algorithm SimplPedPoP(7)

Signer §; is connected to each other signer §; via secure point-to-point channels,

H ie n C h u , Pa u | G e rh a rt’ Ti m which guarantee authentication and confidentiality. This can, e.g., be realized with

a public-key infrastructure (PKI).

RUffi ng, a n d D O m i n i q U e 1. Signer S; chooses a random polynomial f;(Z) over Z, of degree t — 1
Schroder. Practical Schnorr R = a0+ a2 bt 2

and computes A; , = g“** for k =0,...,f{— 1. Denote x; = a:,0 and X; = A, 0.

Th reSh O | d Signatu res Signer §; computes a proof of possession of X; as a Schnorr signature as

follows. Signer S; samples 7; < Z, and sets R; < ¢"i. Signer S, computes
Wit h O ut th e Al ge b ra i C €i +— Hyeg (X, j:'l)z i) and sets § — F:}— ¢ixq. Signer §; then derives a. C(‘numime-m.
(Aio,...,Ai11) and sends ((Ri, &), (Aio,...,Ai¢—1)) to all signers §; for
je{l,....n}p\ {i}.
G ro u p M Od e | . Moreover, signer S;, for every j € {1,...,n} (including j = i itself), computes
secret shares Z; j = fi(j), and sends &; ; to signer §;.
. Upon receiving proofs of possession, commitments and secret shares from all
other signers, signer &; verifies the Schnorr signatures by computing ¢; <
Hree (Xi, Ri,i) and checking that

ﬁ’JA;"f“ — g% for j € {1

Moreover, signer &; verifies the shares received from the other signers by
checking

e Replaces broadcast o Tl
a bStra Cti O n With Eq If any check fails, signer &; aborts. -

Otherwise, S; runs interactive algorithm Eq(i, ;) with all other signers S; for

p rotocol j€{l,....,n}\ {i} on local input
3. When Eq(i,n:) outputs true for &;, then S; terminates the SimplPedPoP protocol

. mi < {(Ry,55), (A0, .-, Aje 1)}y
e ...and other minor
successfully by outputting the joint public key X + ]___[:;_l X, and the local

C h a nges secret key 7; Z:_l Z;;. When Eq(i,t;) outputs false, then S; aborts.

Fig. 3. Interactive Algorithm SimplPedPoP.




SimplPedPop (simplified!)



SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)



SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)
2. Every signer sends the i-th generated share and the VSS

commitment to the i-th signer.



SimplPedPop (simplified!)

. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)
. Every signer sends the i-th generated share and the VSS
commitment to the i-th signer.

. Every signer computes the threshold public key from the
received VSS commitments.



SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)

2. Every signer sends the i-th generated share and the VSS
commitment to the i-th signer.

3. Every signer computes the threshold public key from the
received VSS commitments.

How does the signer know that ¢ can sign for the threshold
public key?
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4. Every signer verifies their received shares against the
received VSS commitments.

Property of VSS: If every signer received the same VSS
commitments, then the signers can indeed sign!

e Hence, signers need to ensure that no malicious participant
sent a different commitment to signer i than to signer j B.
e That's what the equality (the broadcast) protocol is for.
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Interactive Protocol
Eq(input) outputs {true, false}

In SimplPedPop: input contains the VSS commitments

Integrity: If some honest signers outputs true,
all input of honest signers are equal.



A Simple Eqg
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EqQ returns true,
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A

Just 1 signer left, but we need 2!
Monhey gone!

Integrity is not
enough




Interactive Protocol
Eq(input) outputs {true, false}

In SimplPedPop: input contains the VSS commitments

Integrity: If some honest signer outputs true,
all input of honest signers are equal.

Agreement: If some honest signer outputs
true, then eventually all honest signers will
output true.



Agreement is often an
overlooked requirement in
the FROST world.
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Interim Summary

e We want to specify the SimplPedPop DKG
e SimplPedPop requires some Eq protocol and secure

channels, we want to spec those as well
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EncPedPop

Every signer has long-term ECDH key pair
(staticpub, staticpriv)

Assumption: everyone has a correct copy of every
other signer's staticpub.
Encryption uses a one-time pad created through
ephemeral-static ECDH key exchange between
sender i and receiver ;.

share; ; + ECDH(ephemeral,, static;)
All signers' claimed staticpub, ephemeralpub are
added to Eq's input
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ChilIDKG

e Every signer has long-term "host" key pair, derived

from a seed
e Eqisinstantiated with concrete protocol "CertEq":

1. Everyone sends a signature on their Eq input to

everyone else.
2. Signers terminate successfully when they receive

valid signatures from all » participants ("success
certificate")

e Integrity: ¥
e Agreement: ¥ (can convince signer with success cert)



ChilIDKG

‘ Participant Coordinator

Generation of host public keys
hostpubkey(seed)

hostpubkey

hostpubkeys, t
par‘ticiparﬁ_ﬂep 1(...)
pmsgl
coordinator_stepi(...)
cmsgl
par‘ticiparﬁ:_ﬂep;‘i{...j|
pmsg2
cc:Drdinam_r_ﬁnalize[...]
cmsg2

participant_finalize(...)

Participant Coordinator
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ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.
e Naive approach: backup new secret data per DKG

session
e ChillDKG: backup seed once, and backup "recovery
data" per DKG session. Recovery data is...

= __self-authenticating and contains secret data in
encrypted form

o can be stored with an untrusted third-party
= _.the same for all participants
o can be requested from other participants
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BIP ChilIDKG

Specification in the form of a Bitcoin Improvement
Proposal (BIP)

Standalone (fully specified), no external secure
channels or consensus mechanism.
Specification/reference implementation in Python
Provides (conditional) agreement

Simpler backups: recover from static seed and public
recovery data

Supports any threshold ¢ <n

Untrusted coordinator reduces communication
overhead by aggregating some of the messages
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In-Progress Feature

e A single signer can cause ChillDKG not to succeed
(e.g., by sending nothing, inconsistent VSS
commitments, ...)

e |n the setting we're considering, the signers are not
able to agree on which signer is misbehaving

= E g, requires majority of signers to be honest or
synchronous network

e However, we believe ChillDKG can be modified such
that in case of failure, each honest signer can
determine that either a certain participant or the
coordinator are misbehaving.



More TODOs

e Collect and address feedback
e Add test vectors



https://github.com/BlockstreamResearch/bip-frost-dkg
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