\ gl
O

KRR Blockstream
%) Blockstream /\ RESEARCH

ChilIDKG: Distributed
Key Generation for
FROST

2024-09-18 Tim Ruffing & Jonas Nick

FROST #138

- jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost Ll;l

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25

@ jesseposner commented on Jul 21, 2021 - edited ~

Contributor

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

FROST #138

- jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25

D

jesseposner commented on Jul 21, 2021 - edited ~ Contributor

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25

@ jesseposner commented on Jul 21, 2021 - edited ~

Contributor

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

® "I'm not sure"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25

@ jesseposner commented on Jul 21, 2021 - edited ~

Contributor

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

¢ "I'm not sure”
® "putisn'tit dangerous right now"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

() Conversation 141 -0- Commits 21 Fl Checks 107 Files changed 25

@ jesseposner commented on Jul 21, 2021 - edited ~

Contributor

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

¢ "I'm not sure”
® "putisn'tit dangerous right now"
e "it's really hard to convince yourself that it works"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

() Conversation 141 -0- Commits 21 Fl Checks 107 Files changed 25
@ jesseposner commented on Jul 21, 2021 - edited ~ Contributor
o

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

"I'm not sure”

"but isn't it dangerous right now"

"it's really hard to convince yourself that it works"
"Couldn't it be a problem that there's no randomness?"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

() Conversation 141 -0- Commits 21 Fl Checks 107 Files changed 25
@ jesseposner commented on Jul 21, 2021 - edited ~ Contributor |+
o

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

"I'm not sure”

"but isn't it dangerous right now"

"it's really hard to convince yourself that it works"

"Couldn't it be a problem that there's no randomness?"
"risks inventing complicated machinery that turns out to be
broken"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25
@ jesseposner commented on Jul 21, 2021 - edited ~ Contributor | =+
'

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

¢ "I'm not sure”

® "putisn'tit dangerous right now"

® "it's really hard to convince yourself that it works"

e "Couldn'tit be a problem that there's no randomness?"

® "risks inventing complicated machinery that turns out to be
broken"

e "Sorry, | entirely forgot what we're trying to do"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost L;'

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25
@ jesseposner commented on Jul 21, 2021 - edited ~ Contributor | =+
'

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

¢ "I'm not sure”

® "putisn'tit dangerous right now"

® "it's really hard to convince yourself that it works"

e "Couldn'tit be a problem that there's no randomness?"

® "risks inventing complicated machinery that turns out to be
broken"

e "Sorry, | entirely forgot what we're trying to do"

® "Sorry, I'm doing a lot of handwaving"

FROST #138

19 Open jesseposner wants to merge 21 commits into BlockstreamResearch:master from jesseposner:frost @

) Conversation 141 -o- Commits 21 Fl Checks 107 Files changed 25
@ jesseposner commented on Jul 21, 2021 - edited ~ Contributor | =+
'

This PR implements a BIP-340 compatible threshold signature system based on FROST (Flexible Round-Optimized Schnorr
Threshold Signatures).

TODO

v Key generation APIs

¢ "I'm not sure”

® "putisn'tit dangerous right now"

® "it's really hard to convince yourself that it works"

e "Couldn'tit be a problem that there's no randomness?"

® "risks inventing complicated machinery that turns out to be
broken"

e "Sorry, | entirely forgot what we're trying to do"

® "Sorry, I'm doing a lot of handwaving"

® "This can be mitigated by another communication round"

Chelsea Komlo and lan
Goldberg. FROST: Flexible

round-optimized Schnorr
threshold signatures.

FROST KeyGen
Round 1

1. Every participant P, samples ¢ random values (a,q, - . ., a(s— 1) y) <— Ly, an
uses these values as coefficients to define a degree r -1 polynomlal

. f—1 ;
filz) = ZJ o g
2. Every P, computes a proof of knowledge to the corresponding secret a;q by
. $.
calculating o; = (R;, i), such that k & Z,, R; = g*,
c; = H(i, P, g%, R;), p; = k + a;g - ¢;, with ® being a context string to
prevent replay attacks.

3. Every participant P; computes a public commitment Cﬂ ={i0,-- -+ Pigt—1))»
where ¢;; = ¢"9,0< j <t—1

4. Every P, broadcasts C., o, to all other participants.

5. Upon receiving Cy, oy from participants 1 < ¢ < n, £ # i, partlmp’mt P

verifies oy = (Ry, yuy), aborting on failure, by checking Ry = g#* - ¢,
where Cy = H ({ﬁ‘ ‘;D (J,g_(]: Iw)

Upon success, participants delete {o; : 1 < ¢ < n}.

Round 2

1. Each P; securely sends to each other participant P, a secret share (£, f;({)),
deleting f; and each share afterward except for (7, f;(¢)), which they keep
for themselves.

o ray P T ke .
2. Each P, verifies their shares by calculating: ¢/*() = TT_{ &5, ™% 9, aborting

if the check fails.

3. Each P calculates their long-lived private signing share by computing
$; = Yy, fe(i), stores s; securely, and deletes each fy(i).

4. Each P calculates their public verification share Y; = ¢, and the group’s
public key Y = [[/_, ¢;o. Any participant can compute the public

verification share of any other participant by calculating
n t—1

Jk mod g
=TT e

i=1k=0

What is distributed key
generation in FROST?

e Interactive protocol between n signers that takes ¢
e Outputs for each signer i:

= the threshold public key
= the secret share signer i will use for signing
e Properties:

m ¢ out of n signers can use their share to sign
= At least ¢ signers are required to produce a
signature

o In particular, there's no "trusted dealer" that
generates and distributes the shares

The FROST RFC famously
does not specify a DKG. It
relies on a trusted dealer.

We should write a detailed
specification of the key
generation protocol...

Interactive Algorithm SimplPedPoP(7)

Signer §; is connected to each other signer §; via secure point-to-point channels,

H ie n C h u , Pa u | G e rh a rt’ Ti m which guarantee authentication and confidentiality. This can, e.g., be realized with

a public-key infrastructure (PKI).

RUffi ng, a n d D O m i n i q U e 1. Signer S; chooses a random polynomial f;(Z) over Z, of degree t — 1
Schroder. Practical Schnorr R = a0+ a2 bt 2

and computes A; , = g“** for k =0,...,f{— 1. Denote x; = a:,0 and X; = A, 0.

Th reSh O | d Signatu res Signer §; computes a proof of possession of X; as a Schnorr signature as

follows. Signer S; samples 7; < Z, and sets R; < ¢"i. Signer S, computes
Wit h O ut th e Al ge b ra i C €i +— Hyeg (X, j:'l)z i) and sets § — F:}— ¢ixq. Signer §; then derives a. C(‘numime-m.
(Aio,...,Ai11) and sends ((Ri, &), (Aio,...,Ai¢—1)) to all signers §; for
je{l,....n}p\ {i}.
G ro u p M Od e | . Moreover, signer S;, for every j € {1,...,n} (including j = i itself), computes
secret shares Z; j = fi(j), and sends &; ; to signer §;.
. Upon receiving proofs of possession, commitments and secret shares from all
other signers, signer &; verifies the Schnorr signatures by computing ¢; <
Hree (Xi, Ri,i) and checking that

ﬁ’JA;"f“ — g% for j € {1

Moreover, signer &; verifies the shares received from the other signers by
checking

e Replaces broadcast o Tl
a bStra Cti O n With Eq If any check fails, signer &; aborts. -

Otherwise, S; runs interactive algorithm Eq(i, ;) with all other signers S; for

p rotocol j€{l,....,n}\ {i} on local input
3. When Eq(i,n:) outputs true for &;, then S; terminates the SimplPedPoP protocol

. mi < {(Ry,55), (A0, .-, Aje 1)}y
e ...and other minor
successfully by outputting the joint public key X +]___[:;_l X, and the local

C h a nges secret key 7; Z:_l Z;;. When Eq(i,t;) outputs false, then S; aborts.

Fig. 3. Interactive Algorithm SimplPedPoP.

SimplPedPop (simplified!)

SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)

SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)
2. Every signer sends the i-th generated share and the VSS

commitment to the i-th signer.

SimplPedPop (simplified!)

. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)
. Every signer sends the i-th generated share and the VSS
commitment to the i-th signer.

. Every signer computes the threshold public key from the
received VSS commitments.

SimplPedPop (simplified!)

1. Every signer generates n shares and computes a VSS
commitment to the shares. (VSS: verifiable secret sharing)

2. Every signer sends the i-th generated share and the VSS
commitment to the i-th signer.

3. Every signer computes the threshold public key from the
received VSS commitments.

How does the signer know that ¢ can sign for the threshold
public key?

4. Every signer verifies their received shares against the
received VSS commitments.

4. Every signer verifies their received shares against the
received VSS commitments.

Property of VSS: If every signer received the same VSS
commitments, then the signers can indeed sign!

4. Every signer verifies their received shares against the
received VSS commitments.

Property of VSS: If every signer received the same VSS
commitments, then the signers can indeed sign!

e Hence, signers need to ensure that no malicious participant
sent a different commitment to signer i than to signer j B.

4. Every signer verifies their received shares against the
received VSS commitments.

Property of VSS: If every signer received the same VSS
commitments, then the signers can indeed sign!

e Hence, signers need to ensure that no malicious participant
sent a different commitment to signer i than to signer j B.
e That's what the equality (the broadcast) protocol is for.

Interactive Protocol
Eq(input) outputs {true, false}

Interactive Protocol
Eq(input) outputs {true, false}

In SimplPedPop: input contains the VSS commitments

Interactive Protocol
Eq(input) outputs {true, false}

In SimplPedPop: input contains the VSS commitments

Integrity: If some honest signers outputs true,
all input of honest signers are equal.

A Simple Eqg

2-of-3 Example

e a

messa%e

X

%\
@

2-of-3 Example

Eq returns true,
DKG finished

1/{, I
y . © let's send money to
a\\d ta

threshold pk!
58%6 P

me>s

%\
@

X

2-of-3 Example

EqQ returns true,
DKG finished

u I/
y . © let's send money to

threshold pk!
egsa%e

%
; @ DKG not finished

X

1249

Just 1 signer left, but we need 2!
Monhey gone!

A

Just 1 signer left, but we need 2!
Monhey gone!

A

Just 1 signer left, but we need 2!
Monhey gone!

Integrity is not
enough

Interactive Protocol
Eq(input) outputs {true, false}

In SimplPedPop: input contains the VSS commitments

Integrity: If some honest signer outputs true,
all input of honest signers are equal.

Agreement: If some honest signer outputs
true, then eventually all honest signers will
output true.

Agreement is often an
overlooked requirement in
the FROST world.

Interim Summary

Interim Summary

e We want to specify the SimplPedPop DKG

Interim Summary

e We want to specify the SimplPedPop DKG
e SimplPedPop requires some Eq protocol and secure

channels, we want to spec those as well

Design

SimplPedPop

Design

SimplPedPop

EncPedPop

Design

SimplPedPop

EncPedPop

ChillDKG

EncPedPop

EncPedPop

e Everysigner has long-term ECDH key pair
(staticpub, staticpriv)

EncPedPop

e Everysigner has long-term ECDH key pair
(staticpub, staticpriv)
e Assumption: everyone has a correct copy of every
other signer's staticpub.

EncPedPop

e Everysigner has long-term ECDH key pair
(staticpub, staticpriv)
e Assumption: everyone has a correct copy of every
other signer's staticpub.
e Encryption uses a one-time pad created through
ephemeral-static ECDH key exchange between

sender i and receiver ;.
share; ; + ECDH(ephemeral,, static;)

EncPedPop

Every signer has long-term ECDH key pair
(staticpub, staticpriv)

Assumption: everyone has a correct copy of every
other signer's staticpub.
Encryption uses a one-time pad created through
ephemeral-static ECDH key exchange between
sender i and receiver ;.

share; ; + ECDH(ephemeral,, static;)
All signers' claimed staticpub, ephemeralpub are
added to Eq's input

ChilIDKG

ChilIDKG

e Every signer has long-term "host" key pair, derived
from a seed

ChilIDKG

e Every signer has long-term "host" key pair, derived
from a seed
e Eqis instantiated with concrete protocol "CertEq":

ChilIDKG

e Every signer has long-term "host" key pair, derived
from a seed
e Eqisinstantiated with concrete protocol "CertEq":

1. Everyone sends a signature on their Eq input to
everyone else.

ChilIDKG

e Every signer has long-term "host" key pair, derived
from a seed
e Eqisinstantiated with concrete protocol "CertEq":
1. Everyone sends a signature on their Eq input to

everyone else.
2. Signers terminate successfully when they receive

valid signatures from all » participants ("success
certificate")

ChilIDKG

e Every signer has long-term "host" key pair, derived

from a seed
e Eqisinstantiated with concrete protocol "CertEq":

1. Everyone sends a signature on their Eq input to

everyone else.
2. Signers terminate successfully when they receive

valid signatures from all » participants ("success
certificate")

e Integrity: ¥

ChilIDKG

e Every signer has long-term "host" key pair, derived

from a seed
e Eqisinstantiated with concrete protocol "CertEq":

1. Everyone sends a signature on their Eq input to

everyone else.
2. Signers terminate successfully when they receive

valid signatures from all » participants ("success
certificate")

e Integrity: ¥
e Agreement: ¥ (can convince signer with success cert)

ChilIDKG

‘ Participant Coordinator

Generation of host public keys
hostpubkey(seed)

hostpubkey

hostpubkeys, t
par‘ticiparﬁ_ﬂep 1(...)
pmsgl
coordinator_stepi(...)
cmsgl
par‘ticiparﬁ:_ﬂep;‘i{...j|
pmsg2
cc:Drdinam_r_ﬁnalize[...]
cmsg2

participant_finalize(...)

Participant Coordinator

ChilIDKG Backups

ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.

ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.
e Naive approach: backup new secret data per DKG

session

ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.

e Naive approach: backup new secret data per DKG
session

e ChillDKG: backup seed once, and backup "recovery
data" per DKG session. Recovery data is...

ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.
e Naive approach: backup new secret data per DKG

session
e ChillDKG: backup seed once, and backup "recovery
data" per DKG session. Recovery data is...

= __self-authenticating and contains secret data in
encrypted form

o can be stored with an untrusted third-party

ChilIDKG Backups

e |n contrast to Schnorr sigs or MuSig, secret keys
cannot be derived from the seed.
e Naive approach: backup new secret data per DKG

session
e ChillDKG: backup seed once, and backup "recovery
data" per DKG session. Recovery data is...

= __self-authenticating and contains secret data in
encrypted form

o can be stored with an untrusted third-party
= _.the same for all participants
o can be requested from other participants

BIP ChilIDKG

BIP ChilIDKG

e Specification in the form of a Bitcoin Improvement
Proposal (BIP)

BIP ChilIDKG

e Specification in the form of a Bitcoin Improvement
Proposal (BIP)

e Standalone (fully specified), no external secure
channels or consensus mechanism.

BIP ChilIDKG

e Specification in the form of a Bitcoin Improvement
Proposal (BIP)

e Standalone (fully specified), no external secure
channels or consensus mechanism.

e Specification/reference implementation in Python

BIP ChilIDKG

Specification in the form of a Bitcoin Improvement
Proposal (BIP)

Standalone (fully specified), no external secure
channels or consensus mechanism.
Specification/reference implementation in Python
Provides (conditional) agreement

BIP ChilIDKG

Specification in the form of a Bitcoin Improvement
Proposal (BIP)

Standalone (fully specified), no external secure
channels or consensus mechanism.
Specification/reference implementation in Python
Provides (conditional) agreement

Simpler backups: recover from static seed and public
recovery data

BIP ChilIDKG

Specification in the form of a Bitcoin Improvement
Proposal (BIP)

Standalone (fully specified), no external secure
channels or consensus mechanism.
Specification/reference implementation in Python
Provides (conditional) agreement

Simpler backups: recover from static seed and public
recovery data

Supports any threshold ¢ <n

BIP ChilIDKG

Specification in the form of a Bitcoin Improvement
Proposal (BIP)

Standalone (fully specified), no external secure
channels or consensus mechanism.
Specification/reference implementation in Python
Provides (conditional) agreement

Simpler backups: recover from static seed and public
recovery data

Supports any threshold ¢ <n

Untrusted coordinator reduces communication
overhead by aggregating some of the messages

In-Progress Feature

In-Progress Feature

e A single signer can cause ChillDKG not to succeed
(e.g., by sending nothing, inconsistent VSS
commitments, ...)

In-Progress Feature

e A single signer can cause ChillDKG not to succeed
(e.g., by sending nothing, inconsistent VSS
commitments, ...)

e |n the setting we're considering, the signers are not
able to agree on which signer is misbehaving

= E g, requires majority of signers to be honest or
synchronous network

In-Progress Feature

e A single signer can cause ChillDKG not to succeed
(e.g., by sending nothing, inconsistent VSS
commitments, ...)

e |n the setting we're considering, the signers are not
able to agree on which signer is misbehaving

= E g, requires majority of signers to be honest or
synchronous network

e However, we believe ChillDKG can be modified such
that in case of failure, each honest signer can
determine that either a certain participant or the
coordinator are misbehaving.

More TODOs

e Collect and address feedback
e Add test vectors

https://github.com/BlockstreamResearch/bip-frost-dkg

https://github.com/BlockstreamResearch/bip-frost-dkg

