BLOCKCHAIN COMMONS POST-QUANTUM CRYPTOGRAPHY

SYMMETRIC ENCRYPTION

- ChaCha20-Poly1305
 - ChaCha20: 256-bit stream cipher
 - Requires 2²⁵⁶ operations to brute force
 - Requrires 2¹²⁸ under quantum attack (Grover's algorithm): still infeasible
 - Poly1305: 128-bit one-time authenticator
 - Requires 2¹²⁸ operations to brute force
 - Requrires 2⁶⁴ under quantum attack: not ideal, still beyond practical feasibility.
- Verdict: even with quantum attacks, ChaCha20-Poly1305 remains secure for the foreseeable future, though post-quantum cryptography research is ongoing to find even more robust replacements.

WHY POST-QUANTUM PUBLIC-KEY CRYPTOGRAPHY?

- Symmetric encryption (ChaCha20-Poly1305, AES-256, etc.) survives quantum attacks
 - \blacktriangleright Grover's algorithm reduces security by half (e.g., 256-bit \rightarrow 128-bit), but this is still strong
 - Solution: Use 256-bit keys instead of 128-bit keys

Public-key cryptography (RSA, ECC, DH) is completely broken by Shor's algorithm

- Shor's algorithm solves factoring & discrete log in polynomial time \rightarrow zero security
- All current asymmetric systems fail under large quantum computers
- Post-Quantum Cryptography (PQC) is needed to replace public-key cryptosystems
- Symmetric crypto stays (with larger keys), but public-key crypto must be replaced
 - ML-KEM (Kyber, etc.) replaces Diffie-Hellman/X25519 for key exchange
 - ML-DSA (Dilithium, Falcon, etc.) replaces RSA/ECDSA for digital signatures

ALGORITHMS

ML-DSA (FIPS 204)

- Module Lattice Digital Signature Algorithm
- Three levels: 44, 65, and 87
- Based on, but not the same as "CRYSTALS-Dilithium"
- Signatures are non-deterministic
- ML-KEM (FIPS 203)
 - Module Lattice Key Encapsulation Mechanism
 - Three levels: 512, 768, and 1024
 - Based on, but not the same as "CRYSTALS-Kyber"

Not linearly composable like Schnorr signatures (no current PQC DSA is)

IT'S ALL ABSTRACTED!

- Paradigms for signatures & for key encapsulation are uniform
 Future-proofed because it's easy to make changes
 You can choose a signature method
 ML-DSA, ECDSA, Ed25519, Schnorr, SSH
 You can choose an encryption method
 - ChaCha20-Poly1305, ML-KEM
- Not crypto-agile, but crypto-agnostic

NO SLH-DSA YET

- Stateless Hash-Based Digital Signature Standard (FIPS 205) Based on, but not the same as SPHINCS+
- It's very large!
- It's redundant with ML-DSA
- But easy to add due to abstraction

PQC CHALLENGES

Quantum signatures are significantly slower & larger Hybrid Quantum is needed Uses PQC to strengthen classic cryptography Emerging approaches from Apple (PQ3) & Signal (PQXDH) Use PQC for initiation & periodic rotation Use strong classic cryptography for ongoing usage Our recent work uses PQC for Symmetric Key Exchange Then continues with ChaChaPoly We still need to release an envelope-cli that fully embraces PQC

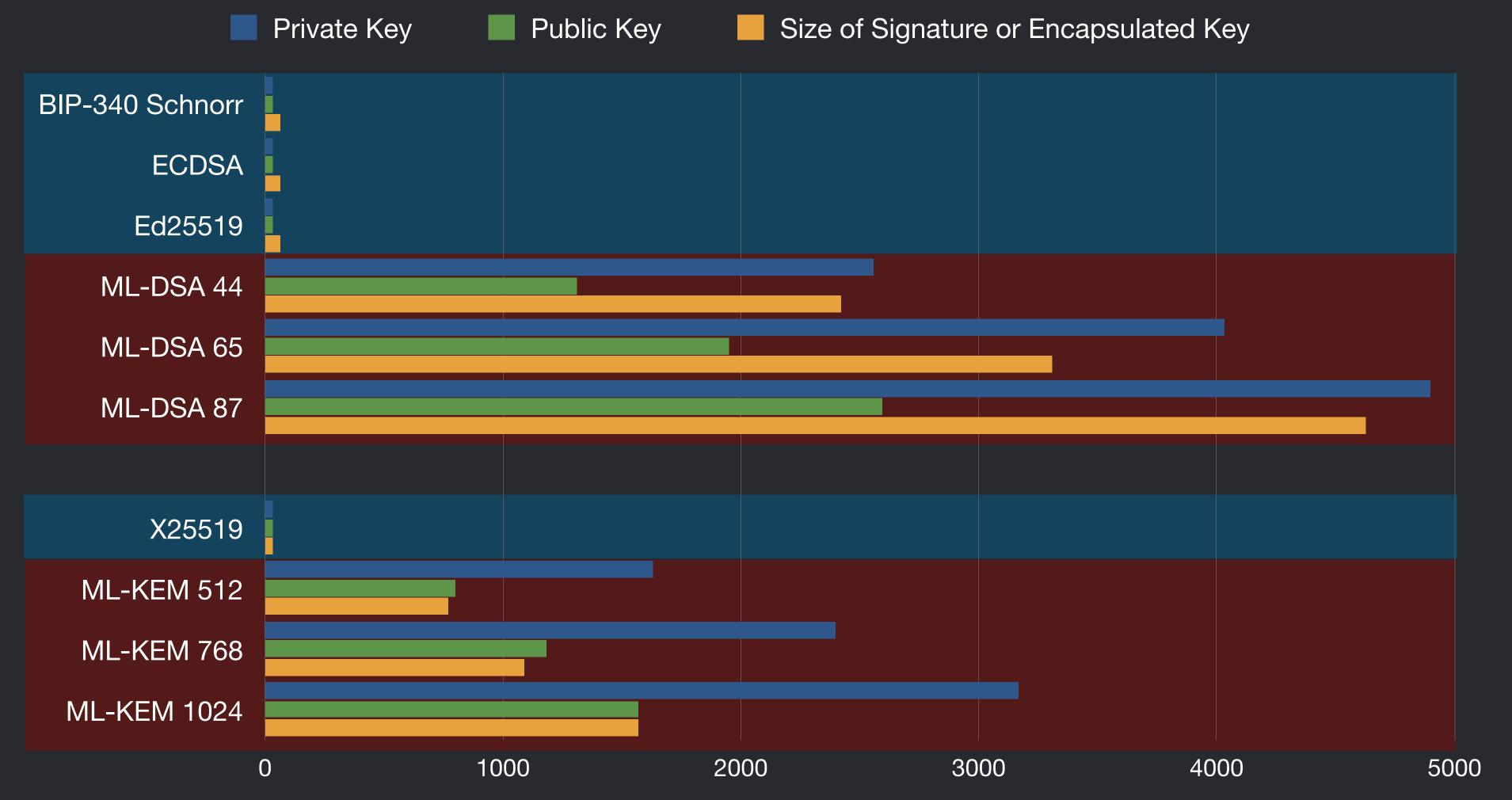
COMPARISON OF STRUCTURE SIZES BETWEEN CLASSICAL AND QUANTUM CRYPTOGRAPHY

Priv

Classical

Quantum

BIP-340 Schnorr ECDSA Ed25519 ML-DSA 44 ML-DSA 65 ML-DSA 87


X25519 ML-KEM 512 ML-KEM 768 ML-KEM 1024

vate Key	Public Key	Size of Signature or Encapsulated Key
32	32	64
32	33	64
32	32	64
2560	1312	2420
4032	1952	3309
4896	2592	4627
32	32	32
1632	800	768
2400	1184	1088
3168	1568	1568

COMPARISON OF STRUCTURE SIZES

BETWEEN CLASSICAL AND QUANTUM CRYPTOGRAPHY

