
BLOCKCHAIN COMMONS

HUBERT

HUBERT

WHAT IS HUBERT?

▸ A protocol that facilites secure multiparty transactions:

‣ 📝	 Participants write once using random keys
‣ 🆔	 Messages contain random keys for expected

responses, enabling bidirectional communication
‣ 📦	 Complete opacity to outsiders through end-to-end

encryption
‣ 🛜	 No central server required for coordination
‣ 🤝	 Trustless operation using public distributed networks

HUBERT

WHAT ARE URS?

▸UR: Uniform Resource
‣ Defined in BCR-2020-005
‣ https://github.com/blockchaincommons/

research
‣ Encodes binary data as typed, easy to

handle text URI
‣ ur:type/bytewords

HUBERT

WHAT IS AN ARID?

▸🆔 ARID: Apparently Random Identifier
‣ Defined in BCR-2022-002
‣ https://github.com/blockchaincommons/research

‣ 256 statistically random bits (32 bytes)
‣ Can refer to anything
‣ But cannot be correlated to anything
‣ In Hubert, ARIDs are addresses of cryptographic

dead drops.

HUBERT

WHAT IS A DEAD DROP?

▸ Spycraft: A way to exchange messages
where the parties never have to meet in
person.

▸ Sender leaves message at known location,
receiver visits later and picks it up.

▸ Requires out-of-band coordination to set up
locations, protocols, and signals.

HUBERT

WHAT IS GORDIAN ENVELOPE?

‣ “Smart document” format for structured data with a built-in
Merkle-like digest tree.

‣ Core superpower: hashed-data elision (selective redaction)
with verifiable inclusion proofs—disclose only what’s needed
while signatures remain valid.

‣ Radically recursive: envelopes contain other envelopes.

‣ Privacy and human-rights oriented design (RFC 6973 / RFC
8280 alignment).

HUBERT

WHAT IS GORDIAN ENVELOPE?

‣ Flexible cryptography—Schnorr, Ed25519, SSH, Post-Quantum
algorithms supported for signing/encryption.

‣ Supports non-correlation via salt.

‣ Suited to cryptographic seeds, keys, verifiable credentials,
and other high-integrity artifacts

‣ Compact binary format with minimal overhead.

‣ Wire-agnostic: integrity, privacy, and semantics travel with the
data—ideal for offline/air-gapped and multi-hop workflows.

HUBERT

WHAT IS GORDIAN SEALED TRANSACTION PROTOCOL (GSTP)?

‣ Secure, transport-agnostic request/response protocol built on
Gordian Envelope

‣ Works over HTTP/TCP, Bluetooth, NFC, QR “sneakernet,” Tor,
etc.

‣ Messages are both encrypted to recipients and signed by the
sender

‣ Provides Encrypted State Continuations (ESC) to carry
encrypted workflow state inside the messages themselves.

HUBERT

WHAT IS GORDIAN SEALED TRANSACTION PROTOCOL (GSTP)?

‣ Asynchronous and peer-to-peer friendly; also supports
classic client-server flows and multimodal (multi-channel)
transactions.

‣ Encourages idempotent actions so retries over flaky links are
safe.

‣ Designed to be “wire-agnostic”: encryption/signing are at
the protocol layer, so insecure/unreliable transports are
acceptable.

IPFS

STORAGE LAYERS

STORAGE LAYERS

HUBERT

STORAGE: BITTORRENT MAINLINE DHT

▸ Used by BitTorrent clients to find peers.

▸ In 2013, the concurrent number of users of Mainline DHT was 16–
28 million, with intra-day changes of at least 10 million.

▸ UDP overlay where peers collectively replace trackers; keys live in a
160-bit space and lookups walk “closest” nodes.

▸ “Sloppy” DHT—eventually consistent and best-effort. Items expire
without re-announcement.

▸ Signaling/coordination layer, not durable storage.

HUBERT

STORAGE: BITTORRENT MAINLINE DHT

▸ Two data modes:

▸ Immutable items (key = SHA-1 of the value)

▸ Mutable items (key = SHA-1 of the publisher's Ed25519 public
key concatenated with optional salt)

▸ Values are practically capped at ~1 KB.

▸ Expect messages to last ~30–45 minutes without republishing

HUBERT

STORAGE: BITTORRENT MAINLINE DHT

▸ We use the “mutable” mode by stretching the ARID into an
Ed25519 key pair.

▸ We derive the Ed25519 private key from the ARID
deterministically using HKDF:

▸ Private key used for signing the payload

▸ Public key derived from private key, used to compute DHT
storage location and verify payload

▸ Write-once semantics enforced by rejecting updates past seq=1

HUBERT

STORAGE: IPFS

▸ IPFS (InterPlanetary File System) is a distributed, content-
addressed storage network

▸ Established network with consistent operation; well-suited
for coordination and signaling. ~56,000 dedicated
infrastructure nodes globally

▸ Content persists reliably when pinned; 48-hour DHT
expiration ensures fresh routing data

▸ Content addressing: Files identified by CID (Content
Identifier) = cryptographic hash of content

IPFS

STORAGE LAYERS

IPFS

HUBERT

STORAGE: IPFS

▸ Two-layer storage model:

▸ Immutable layer: Data stored at CID (content hash), retrieved via Kademlia DHT

▸ Mutable layer: IPNS (InterPlanetary Name System) provides mutable pointers to
CIDs

▸ Size limits: Practical limit ~1-10 MB per item (much larger than DHT's 1 KB)

▸ Persistence: Content expires from DHT in 48 hours without re-announcement

▸ IPNS records should be republished every 4 hours (Kubo default)

▸ Long-term persistence requires "pinning" (explicit storage on specific nodes)

▸ Latency: 1-10 seconds for IPNS resolution (slower than Mainline DHT)

IPFS

HUBERT

STORAGE: IPFS

▸ Dependencies: Requires Kubo daemon or compatible IPFS node with
RPC API

▸ Write-once semantics: Before publishing, check if IPNS name resolves
to any CID

▸ If resolution succeeds → name already published → reject with
AlreadyExists error

▸ If resolution fails with “could not resolve name” → name
unpublished → proceed with publish

▸ Unlike Mainline DHT‘s sequence number approach, relies on IPNS
name existence check

IPFS

STORAGE LAYERS

IPFS

HUBERT

STORAGE: HYBRID

▸ Hybrid storage combines Mainline DHT and IPFS with automatic size-based routing

▸ Intelligent storage selection:

▸ Small envelopes (≤1000 bytes): Stored directly in Mainline DHT

▸ Large envelopes (>1000 bytes): Two-step indirection process

▸ Storage process for large envelopes:

▸ 1. Generate new "reference ARID" for the actual envelope

▸ 2. Store actual envelope in IPFS at reference ARID

▸ 3. Store small reference envelope in DHT at original ARID

HUBERT

STORAGE: HYBRID

▸ Retrieval process:

▸ 1. Fetch envelope from DHT using original ARID

▸ 2. Check if it's a reference envelope (has 'dereferenceVia': "ipfs")

▸ 3. If reference: Extract reference ARID and fetch actual envelope
from IPFS

▸ 4. If not reference: Return DHT envelope directly

HUBERT

STORAGE: HYBRID

▸ Benefits:

▸ Transparent to caller: Application uses same API regardless of
storage backend

▸ Fast retrieval for small messages (DHT: 1-5 seconds)

▸ Large capacity for big messages (IPFS: up to 10 MB)

▸ No size calculation required by caller

HUBERT

STORAGE: HYBRID

▸ Dependencies: Requires both embedded DHT client and Kubo
daemon for IPFS

▸ Write-once semantics: Enforced separately by each backend

▸ (DHT seq=1, IPFS existence check)

▸ Still to be implemented:

▸ Encryption of reference envelope to multiple recipients; currently
stored as plaintext and exposes IPFS ARID.

STORAGE LAYERS

HUBERT

STORAGE: SERVER

▸ Centralized HTTP-based storage for testing and controlled
deployments

▸ Architecture: Simple HTTP POST API with write-once semantics

▸ PUT endpoint: /put (stores ARID + envelope + optional TTL)

▸ GET endpoint: /get (retrieves envelope by ARID with polling)

▸ Two storage backends:

▸ Memory: In-memory HashMap, volatile (lost on restart)

▸ SQLite: Persistent file-based database storage

HUBERT

STORAGE: SERVER

▸ Storage features:

▸ Direct ARID-to-envelope mapping (no key derivation like DHT/IPFS)

▸ Write-once enforcement: Returns 409 CONFLICT if ARID already
exists

▸ TTL support: Optional time-to-live in seconds for automatic
expiration

▸ Background cleanup: Expired entries pruned automatically (every
60 seconds for SQLite)

DEMO

