
Blockchain Commons #GordianClubs 2025-10-01

1

What is Blockchain Commons?

We are a community interested in self-sovereign control of
digital assets and identity
We bring together stakeholders to collaboratively develop
interoperable infrastructure
We design decentralized solutions where everyone wins
We are a neutral "not-for-profit" that enables people to control
their own digital destiny

2

Thank you to our Sponsors!

Become a sponsor! Mail us at team@blockchaincommons.com

3

mailto:team@blockchaincommons.com

Last Meeting

FROST Signing on the Command-Line

August 2025

Demo of FROST signing of Bitcoin transactions
with BDK & ZF FROST Tools

See https://developer.blockchaincommons.com/meetings/

4

https://developer.blockchaincommons.com/meetings/

Today's Topics

Project Xanadu: Before Its Time
Gordian Clubs: An Introduction
Gordian Clubs: A Demo

5

Project Xanadu
"In Xanadu did Kubla Khan

A stately pleasure-dome decree:
Where Alph, the sacred river, ran

Through caverns measureless to man
Down to a sunless sea."

—Samuel Taylor Coleridge

6

Project Xanadu Background

First Hypertext Project
"digital repository scheme for world-wide electronic publishing"

1960, named Xanadu in 1966
Very active in late 1970s
At Autodesk in 1980s
I became involved in early 1990s

Visionary: Ted Nelson
Other Luminaries: Roger Gregory, Mark S. Miller & Stuart Greene

7

Project Xanadu vs WWW

Developed before the internet, Xanadu was in many ways superior to the World Wide
Web that followed it:

Two-Way Links
Uniquely Identified Users
Uniquely Identified Documents
Dynamically Changing Storage
Micropayments

8

The Xanadu Club System

I was particularly inspired by the Xanadu Club System:
Public-by-Default: The root was a public club, openness was default,
privacy was a partition
Person as Club of One: No difference between people and groups
Clubs as Members: Groups could hold rights and be members of other
groups
Recursive Clubs: Read Clubs and Write Clubs themselves have Read &
Write Clubs
“Locksmith” options: Clubs could grant access through different kinds of
locksmiths for different purposes

9

Why This Was Revolutionary

Natural hierarchies without central administration
Flexible governance through nested permission structures
Scriptable access control using early smart contracts for permissions
Unified identity model with people and groups treated identically
Modeled how human trust hierarchies actually work

10

11

12

The Problem with Xanadu Clubs:

“Mother may I?” Administrative Fiat
Not

“I can prove I belong.” Mathematical Proof

13

Gordian Clubs: 32 Years in the Making

1993: I proposed cryptographic clubs for Xanadu
But: ⚠️ "RSA too slow; RSA export-restricted; good code doesn't exist"

2001: ⚠️ "Patents too restrictive; patents too expensive"
2014: ⚠️ "Schnorr aggregation not safe"
2025: Technology finally caught up to the vision

Gordian Clubs: Schnorr signatures, FROST, Gordian Envelope, XIDs
Result: Pure mathematical objects that encode permissions in their structure

14

Gordian Club Vision: Recursive Cryptographic Capabilities

Mathematical Delegation

Clubs granting capabilities to other clubs
No administrative intermediaries
Pure cryptographic authorization chains

Recursive permission structures
Club A grants read access to Club B
Club B can delegate subsets to Club C
All enforced by mathematics, not code

Complete Xanadu realization
Ted Nelson's hypertext with cryptographic enforcement
"You are what you can prove you can access"

Rather than being simple documents, Clubs are autonomous objects.

15

Gordian Clubs: Autonmous Access

You receive an Edition produced by a Gordian Club. The content of the Edition is
encrypted and signed.

Transport agnostic: Internet; P2P; TOR; NFC; satellite; sneaker-net
You apply your cryptographic proofs to obtain READ privileges to the Edition
content

The decrypted Edition content may reveal nested Editions from the same
or other Clubs, which you may or may not have access to.

You update an Edition by authoring new Editions in particular clubs that must be
accepted as authoritative due to your cryptographic proofs.

No Server, No Database, No Phoning Home!

16

Access Control: Cryptographic OCaps

Meeting these goals required the replacement of traditional (Xanadu) OCaps with
cryptographic OCaps.

Traditional Ocaps: Software enforces capability delegation Cryptographic Ocaps:
Mathematics enforces capability delegation

How Gordian Clubs Bridge This:
Permits = cryptographic capabilities for read access
Schnorr Signatures = foundation of composable smart signature protocols
Adaptor signatures = aka “Scriptless Scripts” - conditional authorization
protocols
FROST thresholds = group decision capabilities

For the Ocap Community:
Same principles, cryptographic enforcement instead of code
Capabilities become mathematical objects
No confused deputy problem - math doesn't lie

17

The Schnorr Foundation: Mathematical Elegance

Many of the capabilities that we need are supported through Schnorr signatures.

The Key Property: Signature Indistinguishability
Single-party signature = Multi-party signature (same verification)
Simple workflow = Complex workflow (same mathematical structure)

Mathematical linearity enables seamless composition
Why This is Extraordinary

Start with basic cryptographic objects
Evolve to sophisticated multi-party protocols
External systems never need to change
Same verification logic, infinite internal complexity

18

The Schnorr Revolution: True Composability

Schnorr's Super Power: Composable Cryptographic Primitives
Layer complexity without breaking compatibility
All primitives use the same mathematical foundation
All primitives produce indistinguishable signatures
All primitives can be combined and layered

Cryptographic LEGO blocks that actually fit together

19

Cryptographic LEGO Blocks: The Schnorr Ecosystem

Initial Schnorr LEGO Blocks in Gordian Clubs:
#1: Adaptor Signatures → Scriptless Scripts (conditional logic)
#2: FROST → Threshold operations (group decisions)

Future LEGO Blocks:
MuSig2 → Key aggregation
Blind Signatures → Privacy
Predicate Logic → Complex conditional authorization
More!

We can build complex systems from simple, interoperable parts!

20

LEGO Block #1: Scriptless Scripts

Adaptor Signatures: Conditional Logic in Pure Math
“If condition X, then unlock Y” → Mathematical proof
“Atomic operations across systems” → Single signature verification
“Complex multi-party workflows” → Elegant cryptographic composition

The Developer Opportunity: Infrastructure-Free Logic
Embed conditions directly into Schnorr signatures
Chain operations without external coordination
Build workflows that are pure mathematics

Use Cases:
Conditional access, delegation, attenuation, atomic swaps
Cross-system coordination, delegation chains
Any logic expressible in math - no servers required

21

Limitations of Schnorr Adaptor Signatures

Limited to signature mathematics - bounded by what elliptic curves can express
No loops or iteration - mathematics is finite, not computational
No conditional branching on external events - logic must be deterministic
No mutable state - each operation creates new mathematical objects
These "limitations" offer freedom:

Freedom from platform lock-in, censorship, surveillance
Mathematical certainty replacing administrative whim

22

LEGO Block #2: FROST Threshold Operations

FROST: Flexible Round-Optimized Schnorr Threshold
M-of-N signatures that look like single signatures
Privacy-preserving - can't tell who participated
Same verification logic as single-party signatures

Two Core Applications:
Threshold Signing → Group authorization for updates
Group-Managed Provenance → Shared custody of version history

Developer Power:
Start with single-party authorization
Seamlessly upgrade to group governance
External systems never know the difference

23

FROST in Practice: Group Governance Made Simple

Signing Ceremonies:
Coordinate off-chain → Generate signatures
Single signature result → Same as individual signing
No coordinator required → Can be peer-to-peer protocol

Provenance Chain Management:
Shared custody of version history
No single point of failure for critical records
Deterministic advancement without central authority

Use Cases:
Organizational governance without servers
Community decisions with cryptographic proof
Succession planning built into the mathematics

24

Limitations of FROST Threshold Operations

Coordination complexity - requires secure multi-party communication
Network availability - signing ceremonies need participant connectivity
Key management burden - key distributed across multiple parties
No atomic composition - can't combine with other protocols mid-ceremony
These “limitations” offer freedom:

Freedom from single points of failure and control
Democratic governance through cryptographic consensus

25

Future LEGO Blocks: The Expanding Toolkit

Each new block builds on the same Schnorr foundation
Infinite composability from finite primitives

Next (2026?):
MuSig2 → Key aggregation with accountability
Additional object capabilities such as attenuation
Blind Signatures → Privacy-preserving authorization
Predicate Logic → Complex conditional authorization

For Developers:
Build on stable foundation being adopted by Bitcoin and other projects
Mathematical certainty in an uncertain world!

26

From Schnorr Foundation to Gordian Implementation
Now you understand our goals & general design. Here's how we built them:

Selected our data structures: 🔗 dCBOR + 📦 Gordian Envelope
Chose our Schnorr LEGO blocks: 🤝 FROST + 🖋️ adaptor signatures
Added identity layer: 🅧 XIDs for decentralized member management
Secured our data: 🎫 Envelope permits
Created coordination protocols: 🅟 Provenance Marks & 🔒 GSTP

27

Gordian Stack: Data Foundations

Here are our specific technology choices for creating Gordian Clubs within the
Gordian Stack:

🔗 dCBOR (Deterministic CBOR)
Binary encoding ensures that identical semantics produces identical bytes
Foundation for cryptographic verification and content addressing

📦 Gordian Envelope (Smart Document Architecture)
A hash-tree of hash-trees
Subject-predicate-object semantic structure
Selective disclosure through elision or encryption

Reveal only what's needed
Radically recursive — everything is an Envelope

28

Gordian Stack: Schnorr LEGO Blocks

🤝 FROST (Flexible Round-Optimized Schnorr Threshold)
M-of-N threshold signatures indistinguishable from single signatures for
online group signing
Privacy-preserving: Can't tell which specific members participated
Enables group decision-making without revealing individual votes

🖋️ Adapter Signatures
Conditions embedded in signatures

29

Gordian Stack: Identity & Access Control

🅧 XIDs (eXtensible IDentifiers)
32-byte cryptographic identifiers derived from keys (🅧 7e1e25d7…)
Resolve to XID Documents with communication keys, endpoints,
permissions, etc.
Support key rotation while maintaining stable identity

🎫 Permits: Multiple Ways to Access Same Content
XID permits - Identity-based access with key rotation support
Public key permits - Direct cryptographic access to specific keys
SSKR threshold shares (2-of-3, 3-of-5, etc.) for offline key reconstruction
Password permits for simple access scenarios
Each permit type decrypts to the same base symmetric key

30

Gordian Stack: Coordination & Verification

🅟 Provenance Marks: Cryptographic Edition Ordering
Sequential, tamper-evident chains of document versions

Each mark cryptographically links to content digest and previous
mark
Genesis Mark (#0) → Mark #1 → Mark #2 → continuous chain

Enable write access validation and update authorization
Prevent backdating or unauthorized modification

Human-readable names (🅟 KNOB BETA AQUA NOON) for easy verification
🔒 GSTP: Secure Multi-Party Coordination

Transport-agnostic protocol (works over Bluetooth, QR, NFC)
Encrypted message exchange with state preservation
Enables secure coordination without infrastructure

31

How Gordian Clubs Use These Technologies

When You Create a Club:
XID identifies the club entity (publisher) across updates
Content encrypted and stored in Gordian Envelope using dCBOR
Multiple permits allow different access methods (keys, passwords, shares)

When Members Make Decisions:
FROST threshold signatures authorize updates without revealing who voted
Provenance marks create tamper-evident history of all changes
GSTP coordinates secure communication between members

The Result: Autonomous Cryptographic Objects
No servers, no databases, no central authority
Mathematical proofs replace administrative control
Unstoppable, private, censorship-resistant collaboration

32

The Structure of a Gordian Club

A Gordian Club is a layered onion, with some information widely readable and some not:

1. Club Envelope: dCBOR-encoded structure containing everything
2. Public Metadata: Visible information (club ID, version, etc.)
3. Encrypted Payload: The actual club content and member data
4. Access Layer: Collection of permits for different entry methods
5. Governance Layer: FROST signatures and provenance chain

Result: Self-contained cryptographic object requiring no external infrastructure

33

Read vs. Write Access Model

Two Distinct Permission Types:

🔍 Read Access
Decrypt and view current club content
Multiple permit types provide different access methods
One-time or ongoing access depending on permit type

✏️ Write Access
Create new editions with updated content or membership
Requires FROST threshold signatures from existing write group
Provenance marks cryptographically ensure ordering

This separation enables flexible governance while maintaining security

34

The Power of Autonomy

Autonomous Cryptographic Objects enable …

Unblockable Access
No server can be taken down to block access

Perfect Privacy
No logs, no tracking, no surveillance possible

Disaster Resilience
Works during internet outages or infrastructure failures

Censorship Resistance
No authority can revoke mathematical proofs

True Ownership
Control rests with keyholders, not platform operators

35

Platform Independence

Coordination that can't be algorithmically suppressed
Communities that can't be deplatformed
Mathematical certainty replacing platform dependency

36

Use Cases

When Infrastructure Can't Be Trusted:
Dissidents organizing without surveillance
Long-term archival that outlives companies
Emergency coordination during outages
Mathematical proofs endure when servers don't

37

What You'll See in the Demo

Wolf will demonstrate the proof-of-concept implementation:

1. 🅧 Identity Setup - Creating XIDs for Publisher, Alice, and Bob
2. 📝 Genesis Edition - Encrypting "Welcome to Gordian Club!" with multiple permits
3. 🔓 Access Methods - Alice decrypts with XID permit, same content via SSKR
shares

4. 🅟 Edition Updates - Publisher creates "Second Edition" with provenance
continuity

5. ✅ Verification - Proving authenticity and sequence without servers

Watch for: Self-contained data artifacts working without any infrastructure

38

SSKR Threshold Reconstruction in Action

Demo will show 2-of-3 threshold shares:

Publisher creates 3 SSKR shares when sealing content
Any 2 shares can reconstruct the decryption key
Same plaintext emerges from SSKR as from XID permits
Offline capability - no coordination needed between shareholders

Key insight: Multiple paths to same content, different security models

39

Edition Structure You'll See

Encrypted envelope contains:

Plus separate SSKR share envelopes for threshold access

{
 ENCRYPTED [
 'isA': "Edition"
 'hasRecipient': SealedMessage // Alice's XID permit
 'hasRecipient': SealedMessage // Bob's pubkey permit
 "club": XID(8f5980be)
 'hasRecipient': SealedMessage // Proves the publishing order of this Edition
 'provenance': ProvenanceMark(c14fafa0)
]
} [
 'signed': Signature // Publisher's cryptographic seal
]

40

Verification Steps You'll See

Wolf will demonstrate cryptographic validation:

clubs edition verify - Proves edition authenticity and signature validity
clubs edition sequence - Validates provenance chain continuity
Content decryption - Shows multiple permit types accessing same data
Provenance progression - Genesis mark → Mark #1 with content linking

No servers consulted, no external validation needed

41

clubs-cli-rust Demo
You now have the foundation to understand what you'll see next…

Wolf will demonstrate these concepts working together in a real implementation

42

Two Rust Repositories

What Wolf just demonstrated is built on:

📚 clubs-rust - Core cryptographic library

Edition creation, FROST signatures, permit handling
GitHub:

⚡ clubs-cli-rust - Command-line interface (what you saw in action)

Complete demo workflow in demo-log.md
GitHub:

https://github.com/BlockchainCommons/clubs-rust

https://github.com/BlockchainCommons/clubs-cli-rust

43

https://github.com/BlockchainCommons/clubs-rust
https://github.com/BlockchainCommons/clubs-cli-rust

🔧 Getting Started

To install the tools:

cargo install envelope-cli provenance-cli clubs-cli

Full walkthrough:

https://github.com/BlockchainCommons/clubs-cli-rust/blob/master/demo-
log.md

44

https://github.com/BlockchainCommons/clubs-cli-rust/blob/master/demo-log.md
https://github.com/BlockchainCommons/clubs-cli-rust/blob/master/demo-log.md

Future Work (I) - FROST Editions

Using FROST for Editions:
Create the symmetric key to encrypt Edition content.
Create the next provenance mark in a chain without a secret seed.
Sign the Edition Gordian Envelope

Status: proof of concept code working for FROST groups to collaboratively conduct
FROST rounds for editions.

45

Future Work (II) - FROST Workflows

FROST Publish: integrate these pieces into a workflow for FROST groups to publish
Editions indistinguishable from those produced by a single-entity publisher.
FROST Coordinator: create a server, hubert, which is a "dumb" message passing
hub for GSTP messages.

Allows encrypted message passing between participants without having any
idea what the messages mean.
Supports single-cast, multi-cast, and store-and-forward of GSTP messages.
Simplifies the communication needed to conduct the FROST rounds needed
to produce new Editions.
Provides flexible infrastructure for the development of future protocols.

Status: We already have working libraries for FROST and GSTP, just need to integrate with
code for Gordian Clubs.

46

Future Work (III) - Cryptographic Ocaps

What you saw: Static permissions via permits and signatures

What's possible: Dynamic capabilities using adaptor signatures

Delegate authority without sharing keys
Attenuation (restricting permissions when delegating)
Composition (chaining capabilities across systems)

Status: Research phase—novel cryptographic constructions requiring formal proofs

We need cryptographers, engineers, and visionaries to build this together.

47

Ocap Delegation Without Key Sharing

Adaptor signatures enable a powerful pattern:
Alice can delegate her read or write authority to Bob without sharing keys
and without creating a new edition.

"Naive" = Conceptually Sound, Needs Formal Security Analysis
Like naive Schnorr aggregation (which can leak keys → thus the
MuSig2/MuSig-DN protocols), these examples demonstrate the core pattern
but require cryptographic proofs before production use.

Here's how…:

48

Naive Read Delegation via Adaptor Signatures

Goal: Alice (with read access) delegates to Bob without sharing keys OR updating
current edition

1. Alice creates an incomplete signature
Generates random secret t and commits to it: T = t·G
Encrypts symmetric key: k_enc = k ⊕ hash(t, B, edition_id)
Creates adaptor signature hiding t that only Bob can complete

2. Only Bob can complete it
Bob uses his private key b to complete the signature
Completion reveals the secret t to Bob (and only Bob)

3. Result: Delegated read authority
Bob can decrypt this edition using revealed t
Computes: k = k_enc ⊕ hash(t, B, edition_id)
No key sharing required
Alice retains her original access

Key insight: The incomplete signature hides a secret that unlocks decryption—a
cryptographic "locked box" that only Bob's key can open.

49

Naive Write Delegation via Adaptor Signatures

Goal: Alice (with write access) delegates to Bob without sharing keys OR updating
current edition

1. Alice creates an incomplete signature
Standard Schnorr: s = r + H(m)·a
Adaptor version: s' = r + tweak + H(m)·a
The "tweak" is locked to Bob's public key

2. Only Bob can complete it
Bob uses his private key b to derive the tweak to produces a valid
signature from Alice
Proves both: Alice's authorization + Bob's identity

3. Result: Delegated write authority
Bob can create a new edition
Each shows Alice's valid signature
No key sharing required
Alice retains her original authority

Key insight: The incomplete signature is a cryptographic "blank check" that only
Bob can fill out, creating mathematical proof of delegation.

50

Future Work (IV) - Vetting of FROST Provenance Mark VRF
Cryptography

The Problem: When a FROST group publishes a new edition's 🅟 Provenance Mark,
we need a signature that produces a unique, unpredictable symmetric key that
everyone can verify came from the group.
Our Solution: Use a VRF (Verifiable Random Function) where:

The group shares a secret no individual knows
Each document creates a unique mathematical challenge
The group collaboratively solves it, producing an apparently random number
that's:

Unique to this group
Publicly verifiable
Unpredictable yet deterministic

Why It Matters:
Creates cryptographic proof of group consensus
Forms an unbreakable chain of documents
No individual can cheat or predict future keys

Analogy: A combination lock where the group collectively knows the combination,
but no individual does—each use produces a new, verifiable number only they could
create.

51

Future Work (IV) - Vetting of FROST Provenance Mark VRF
Cryptography (continued)

Ciphersuite: ZCash frost-secp256k1-tr with secp256k1 curve
Group Setup: -of- threshold Schnorr with shared public key
VRF Message:
Hash-to-Curve: using SSWU with domain separation
VRF Output: (computed via FROST threshold ceremony)
DLEQ Proof: Chaum–Pedersen proving

Challenge:
Response:

Key Derivation:

Ratchet State:
Genesis:
Properties: Deterministic, roster-invariant, publicly verifiable

t n X = x ⋅ G
mj = H("PMVRF-secp256k1-v1"∥X∥chain_id∥Sj−1∥j)

Hj = H2C(mj)
Γj = x ⋅ Hj

πj logG(X) = logHj
(Γj)

e = H2(X∥Γj∥A∥B∥"FROST-VRF-DLEQ-2025")
z = k + e ⋅ x

keyj = SHA256("PMKEY-v1"∥Γj)[: resolution]
Sj = SHA256("PMSTATE-v1"∥Sj−1∥expand(keyj))

S0 = SHA256("PM-Genesis")

52

Get Involved with Gordian Clubs

Everyone
Let us know what your use cases are for this technology!
Where practical problems can true autonomous data objects solve today?

Cryptographers
We have novel constructions that need cryptographic proofs!

Engineers
We would like peer review of our protocols and code.

Companies
We need partners interested in this tech!

Patrons
We need financial support!

Mail me at team@blockchaincommons.com

53

"Some dreams just need the right tools to become real."

Today, we have those tools. Tomorrow, developers like you will use them to build
coordination systems that preserve human dignity.

Ready to build uncapturable infrastructure?

Christopher Allen (@ChristopherA)

www.BlockchainCommons.com

54

http://www.blockchaincommons.com/

